1.2 Factoring Polynomials

Factoring is the reverse of multiplication.

To factor a polynomial is to find an equivalent expression that is the product of polynomials. An equivalent expression of this type is called a factorization of the polynomial.

GCF: Greatest Common Factor

- When factoring a polynomial, we look for factors common to every term and then use the distributive law.
- When the leading coefficient is a negative number, we generally factor out a common factor with a negative coefficient.

Examples: Factor out a common factor:

$-4 x^{2}-16 x$
$9 m^{2}-27$
$25 x^{2} y^{5}+35 x^{6} y^{3}-15 x^{3} y^{4}$

Factor by Grouping

The largest common factor is sometimes a binomial.
Often, in order to identify a common binomial factor, we must regroup into two groups of two terms each: $\quad(x+4) m+$ $(x+4)(y-b)$.

To Factor $a x^{2}+b x+c$ Using Grouping

1. Make sure that any common factors have been factored out.
2. Multiply the leading coefficient a and the constant c.
3. Find a pair of factors of $a c$, whose sum is b.
4. Rewrite the trinomial's middle term, $b x$, as $p x+q x$.
5. Factor by grouping.

Examples - Factor the following using Factor by Grouping method.
$3 x-3 y-a x+a y$
$x^{2}-3 x y-28 y^{2}$
$6 x^{2}+5 x-6$

