12.1: Circles and Arc Lengths Notes

A diameter is a segment that contains the center of a circle and has both endpoints on the circle. A radius is a segment that has one endpoint at the center and the other endpoint on the circle. Congruent circles have congruent radii. A central angle is an angle whose vertex is the center of the circle.

Essential Understanding You can find the length of part of a circle's circumference by relating it to an angle in the circle.
An arc is a part of a circle. One type of arc, a semicircle, is half of a circle. A minor arc is smaller than a semicircle. A major arc is larger than a semicircle. You name a minor arc by its endpoints and a major arc or a semicircle by its endpoints and another point on the arc.

Problem 1 Naming Arcs

(A) What are the minor arcs of $\odot O$?

B What are the semicircles of $\odot O$?

C What are the major arcs of $\odot O$ that contain point A ?

a. What are the minor arcs of $\odot A$?
b. What are the semicircles of $\odot A$?
c. What are the major arcs of $\odot A$ that contain point Q ?

Arc Measure

The measure of a minor arc is equal to the measure of its corresponding central angle.

The measure of a major arc is the measure of the related minor arc subtracted from 360 .

The measure of a semicircle is 180 .

Example

$$
\begin{aligned}
m \overparen{R T} & =m \angle R S T=50 \\
m \overparen{T Q R} & =360-m \overparen{R T} \\
& =310
\end{aligned}
$$

Adjacent arcs are arcs of the same circle that have exactly one point in common. You can add the measures of adjacent arcs just as you can add the measures of adjacent angles.
xake note Postulate 7 Arc Addition Postulate

The measure of the arc formed by two adjacent arcs is the sum of the measures of the two arcs.
$m \widehat{A B C}=m \widehat{A B}+m \overparen{B C}$

Problem 2 Finding the Measures of Arcs

What is the measure of each arc in $\odot O$?
A $\overparen{B C}$
B $\overparen{B D}$

C $\widehat{A B C}$

D $\overparen{A B}$

What is the measure of each arc in $\odot C$?
a. $m \overparen{P R}$
b. $m \overparen{R S}$
c. $m \overparen{P R Q}$
d. $m \widehat{P Q R}$

Problem 3 Finding a Distance

Film A 2-ft-wide circular track for a camera dolly is set up for a movie scene. The two rails of the track form concentric circles. The radius of the inner circle is 8 ft . How much farther does a wheel on the outer rail travel than a wheel on the inner rail of the track in one turn?

The measure of an arc is in degrees, while the arc length is a fraction of the circumference.

Consider the arcs shown at the right. Since the circles are concentric, there is a dilation that maps C_{1} to C_{2}. The same dilation maps the slice of the small circle
 to the slice of the large circle.
Since corresponding lengths of similar figures are proportional,

$$
\begin{aligned}
\frac{r_{1}}{r_{2}} & =\frac{a_{1}}{a_{2}} \\
r_{1} a_{2} & =r_{2} a_{1} \\
a_{1} & =r_{1} \cdot \frac{a_{2}}{r_{2}}
\end{aligned}
$$

This means that the arc length a_{1} is equal to the radius r_{1} times some number. So for a given central angle, the length of the arc it intercepts depends only on the radius.
An arc of 60° represents $\frac{60}{360}$, or $\frac{1}{6}$, of the circle. So its arc length is $\frac{1}{6}$ of the circumference. This observation suggests the following theorem.

Problem 4 Finding Arc Length

What is the length of each arc shown in red? Leave your answer in terms of π.

What is the length of a semicircle with radius 1.3 m ? Leave your answer in terms of π.

