12.3: Chords Notes

take note

Theorem 77 and Its Converse

Theorem

Within a circle or in congruent circles, congruent central angles have congruent arcs.

Converse

Within a circle or in congruent circles, congruent arcs have congruent central angles.

If
$$\angle AOB \cong \angle COD$$
, then $\widehat{AB} \cong \widehat{CD}$.
If $\widehat{AB} \cong \widehat{CD}$, then $\angle AOB \cong \angle COD$.

Theorem 79 and Its Converse

Theorem

Within a circle or in congruent circles, congruent chords have congruent arcs.

Converse

Within a circle or in congruent circles, congruent

If
$$\overline{AB} \cong \overline{CD}$$
, then $\overline{AB} \cong \overline{CD}$.
If $\overline{AB} \cong \overline{CD}$, then $\overline{AB} \cong \overline{CD}$.

Theorem 78 and Its Converse

Theorem

Within a circle or in congruent circles, congruent central angles have congruent chords.

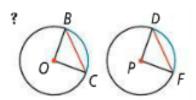
Converse

Within a circle or in congruent circles, congruent chords have congruent central angles.

If
$$\angle AOB \cong \angle COD$$
, then $\overline{AB} \cong \overline{CD}$.
If $\overline{AB} \cong \overline{CD}$, then $\angle AOB \cong \angle COD$.

Problem 1 Using Congruent Chords

In the diagram, $\odot O \cong \odot P$. Given that $\overline{BC} \cong \overline{DF}$, what can you conclude?



Lake note

Theorem 80 and Its Converse

Theorem

Within a circle or in congruent circles, chords equidistant from the center or centers are congruent.

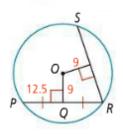
Converse

Within a circle or in congruent circles, congruent chords are equidistant from

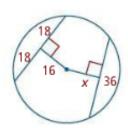
If
$$OE = OF$$
, then $\overline{AB} \cong \overline{CD}$.
If $\overline{AB} \cong \overline{CD}$, then $OE = OF$.

Finding the Length of a Chord

What is the length of \overline{RS} in $\bigcirc O$?



Got It? What is the value of x? Justify your answer.



take note

Theorem 81

Theorem

In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.

If . . .

 $\frac{\overline{AB}}{\overline{AB}}$ is a diameter and $\overline{AB} \perp \overline{CD}$

Then . . .

 $\overline{CE} \cong \overline{ED}$ and $\widehat{CA} \cong \widehat{AD}$

Theorem 82

Theorem

In a circle, if a diameter bisects a chord (that is not a diameter), then it is perpendicular to the chord.

If . . .

 $\overline{\overline{AB}}$ is a diameter and $\overline{CE} \cong \overline{ED}$

Then . . .

 $\overline{AB} \perp \overline{CD}$

take note

Theorem 83

Theorem

In a circle, the perpendicular bisector of a chord contains the center of the circle.

If . . .

 \overline{AB} is the perpendicular bisector of chord \overline{CD}

Then . . .

 \overline{AB} contains the center of $\bigcirc O$

5. In the diagram at the right, GH and KM are perpendicular bisectors of the chords they intersect. What can you conclude about the center of the circle? Justify your answer.

Problem 4 Finding Measures in a Circle

Algebra What is the value of each variable to the nearest tenth?

