
12.4: Inscribed Angles Notes

An angle whose vertex is on the circle and whose sides are chords of the circle is an **inscribed angle**. An arc with endpoints on the sides of an inscribed angle, and its other points in the interior of the angle, is an **intercepted arc**. In the diagram, inscribed $\angle C$ intercepts \widehat{AB} .

take note

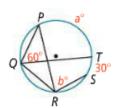
Theorem 84 Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of its intercepted arc.

$$m \angle B = \frac{1}{2} m\widehat{AC}$$

I: The center is on a side of the angle.

II: The center is inside the angle.



III: The center is outside the angle.

Problem 1 Using the Inscribed Angle Theorem

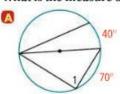
What are the values of a and b?

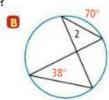
a. In $\bigcirc O$, what is $m \angle A$?

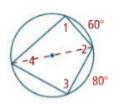
b. What are $m \angle A$, $m \angle B$, $m \angle C$, and $m \angle D$?

Two inscribed angles that intercept the same arc are congruent.

An angle inscribed in a semicircle is a right angle.

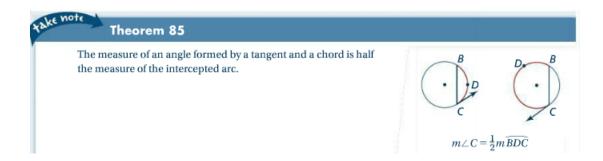


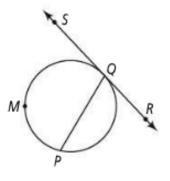

The opposite angles of a quadrilateral inscribed in

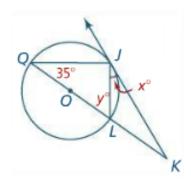

Problem 2 Using Corollaries to Find Angle Measures

What is the measure of each numbered angle?

Got lt? In the diagram at the right, what is the measure of each numbered angle?


The following diagram shows point A moving along the circle until a tangent is formed. From the Inscribed Angle Theorem, you know that in the first three diagrams $m \angle A$ is $\frac{1}{2}m$ \widehat{BC} . As the last diagram suggests, this is also true when A and C coincide.





In the diagram, \overrightarrow{SR} is a tangent to the circle at Q. If $\widehat{mPMQ} = 212$, what is $m \angle PQR$?

Got lt? a. In the diagram at the right, \overline{KJ} is tangent to $\bigcirc O$. What are the values of x and y?

