1.3 Factor and Multiply Polynomials Using Polynomial Identities Notes

Polynomial Identities	
Perfect Square Trinomial $(A+B)^{2}=A^{2}+2 A B+B^{2}$	$\begin{aligned} (4 x+3 y)^{2} & =(4 x)^{2}+2(4 x)(3 y)+(3 y)^{2} \\ & =16 x^{2}+24 x y+9 y^{2} \end{aligned}$
Difference of Squares $(A+B)(A-B)=A^{2}-B^{2}$	$\begin{aligned} (2 x+5 y)(2 x-5 y) & =(2 x)^{2}-(5 y)^{2} \\ & =4 x^{2}-25 y^{2} \end{aligned}$
Cubic Polynomials $\begin{aligned} & (A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3} \\ & (A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3} \end{aligned}$	$\begin{aligned} (2 x+5 y)^{3} & =(2 x)^{3}+(3)(2 x)^{2}(5 y)+(3)(2 x)(5 y)^{2}+(5 y)^{3} \\ & =8 x^{3}+60 x^{2} y+150 x y^{2}+125 y^{3} \end{aligned}$ $\begin{aligned} (2 x-5 y)^{3} & =(2 x)^{3}-(3)(2 x)^{2}(5 y)+(3)(2 x)(5 y)^{2}-(5 y)^{3} \\ & =8 x^{3}-60 x^{2} y+150 x y^{2}-125 y^{3} \end{aligned}$
Sum and Difference of Cubes $\begin{aligned} & A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right) \\ & A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right) \end{aligned}$	$\begin{aligned} 27 x^{3}+64 y^{3} & =(3 x+4 y)\left[(3 x)^{2}-(3 x)(4 y)+(4 y)^{2}\right] \\ & =(3 x+4 y)\left(9 x^{2}-12 x y+16 y^{2}\right) \end{aligned}$ $\begin{aligned} 27 x^{3}-64 y^{3} & =(3 x-4 y)\left[(3 x)^{2}+(3 x)(4 y)+(4 y)^{2}\right] \\ & =(3 x-4 y)\left(9 x^{2}+12 x y+16 y^{2}\right) \end{aligned}$
Trinomial Leading Coefficient 1 $x^{2}+(a+b) x+a b=(x+a)(x+b)$	$\begin{aligned} x^{2}+5 x+6 & =x^{2}+(2+3) x+(2)(3) \\ & =(x+2)(x+3) \end{aligned}$ $\begin{aligned} x^{2}-5 x+6 & =x^{2}+(-2-3) x+(-2)(-3) \\ & =(x-2)(x-3) \end{aligned}$

Sum of Squares

$$
A^{2}+B^{2}=(A+B i)(A-B i)
$$

$$
4 x^{2}+9=(2 x+3 i)(2 x-3 i)
$$

Find each product.

1) $(4 x-6)(4 x+6)$
2) $(2+2 v)^{2}$
3) $(3 m+6 i)(3 m-6 i)$
4) $(4 r+i)(4 r-i)$

Factor each.

5) $100 x^{2}-4$
6) $25 x^{2}+49$
7) $x^{3}+27$
8) $x^{3}-125$
9) $64 x^{3}+27$
10) $64 x^{3}-8$
11) $x^{2}-20 x+100$
12) $25 x^{2}+20 x+4$
