4.5 Verifying Inverse by Composition of Functions

You know that for any function f, each x-value in the domain corresponds to exactly one y-value in the range. For a one-to-one function, it is also true that each y-value in the range corresponds to exactly one x-value in the domain. A one-to-one function f has an inverse f^{-1} that is also a function. If f maps a to b, then f must $\operatorname{map} b$ to a.

Key Concept Composition of Inverse Functions

Functions f and g are inverse functions if and only if
$(f \circ g)(x)=x$ and $(g \circ f)(x)=x$ for x in the domain of g and f, respectively.

This says that the composition of a function and its inverse is essentially the identity function, $\operatorname{id}(x)=x$, or $y=x$.

Problem 6 Composing Inverse Functions

Got It? Let $g(x)=\frac{4}{x+2}$. What is each of the following?
a. $g^{-1}(x)$
b. $\left(g \circ g^{-1}\right)(0)$
c. $\left(g^{-1} \circ g\right)(0)$

Composition of Inverse Functions

If f and f^{-1} are inverse functions, then $\left(f^{-1} \circ f\right)(x)=x$ and $\left(f \circ f^{-1}\right)(x)=x$ for all x in the domains of f and f^{-1} respectively.

So to verify $f(x)$ and $g(x)$ are inverses of each other, show that $\left(g^{\circ} f\right)(x)=x$ and $\left(f^{\circ} g\right)(x)=x$ *** $\left(g{ }^{\circ} f\right)(x)=x$ means $g(f(x))$, so you are substituting in $f(x)$ for x in the function $g(x)$ ***($\left.f^{\circ} g\right)(x)=x$ means $f(g(x))$, so you are substituting in $g(x)$ for x in the function $f(x)$ Examples:

1. Verify that $f(x)=3 x-2$ and $g(x)=\frac{x+2}{3}$ are inverses of each other.
2. Verify that $f(x)=x^{3}-8$ and $g(x)=\sqrt[3]{x+8}$ are inverses of each other.
3. Verify that $f(x)=\sqrt{x+10}-6$ and $g(x)=(x+6)^{2}-10$ are inverses of each other.

To use a table to find an inverse function, switch the x and $f(x)$ values, keep x the same and switch $f(x)$ to $\underline{\mathbf{f}^{-1}(\mathbf{x})}$

Example: Use the table below to find the inverse function

x	$f(x)=x^{3}-4 x+1$
-7	-314
-6	-191
-5	-104
-4	-47
-3	-14
-2	1
-1	4

***The domain of the original function becomes the range of the inverse function and the range of the original function becomes the domain of the inverse function. ${ }^{* * *}$

To use the graph to find the inverse function, reflect the graph over the line $x=y$ (switch the x - and y coordinates)

Examples: Use the graphs to find the inverse functions
1.

2.

