4.5 Verifying Inverse by Composition of Functions

ake note

You know that for any function f, each x-value in the domain corresponds to exactly one y-value in the range. For a **one-to-one function**, it is also true that each y-value in the range corresponds to exactly one x-value in the domain. A one-to-one function f has an inverse f^{-1} that is also a function. If f maps a to b, then f must map b to a.

Key Concept Composition of Inverse Functions

Functions *f* and *g* are inverse functions if and only if $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$ for *x* in the domain of *g* and *f*, respectively.

This says that the composition of a function and its inverse is essentially the identity function, id(x) = x, or y = x.

Problem 6 Composing Inverse Functions

Got It? Let $g(x) = \frac{4}{x+2}$. What is each of the following? **a.** $g^{-1}(x)$ **b.** $(g \circ g^{-1})(0)$ **c.** $(g^{-1} \circ g)(0)$

Composition of Inverse Functions

If f and f^{-1} are inverse functions, then $(f^{-1} \circ f)(x) = x$ and $(f \circ f^{-1})(x) = x$ for all x in the domains of f and f^{-1} respectively.

So to verify f(x) and g(x) are inverses of each other, show that $(g \circ f)(x)=x$ and $(f \circ g)(x)=x$

***(g ° f)(x)=x means g(f(x)), so you are substituting in f(x) for x in the function g(x)

***($f \circ g$)(x)=x means f(g(x)), so you are substituting in g(x) for x in the function f(x)

Examples:

1. Verify that f(x) = 3x - 2 and $g(x) = \frac{x+2}{3}$ are inverses of each other.

2. Verify that $f(x) = x^3 - 8$ and $g(x) = \sqrt[3]{x+8}$ are inverses of each other.

3. Verify that $f(x) = \sqrt{x+10} - 6$ and $g(x) = (x+6)^2 - 10$ are inverses of each other.

To use a table to find an inverse function, switch the x and f(x) values, keep x the same and switch f(x) to $\underline{f^1(x)}$

Example: Use the table below to find the inverse function

x	$f(x) = x^3 - 4x + 1$		
-7	-314		ļ
-6	-191		ļ
-5	-104		
-4	-47		
-3	-14		
-2	1		l
-1	4		

The domain of the original function becomes the range of the inverse function and the range of the original function becomes the domain of the inverse function.

To use the graph to find the inverse function, reflect the graph over the line x=y (switch the x- and ycoordinates)

Examples: Use the graphs to find the inverse functions

