Secondary Math 3

Converting Radians and Degrees Notes

VOCABULARY

An angle with its vertex at the center of the circle is called a central angle.

An intercepted arc is the portion of a circle with endpoints on the sides of the central angle and remaining points within the interior of the angle.

A radian is the measure of the central angle that intercepts an arc with length equal to the radius of the circle. You can see that it takes 6 radians and a little more (about 0.28) to complete the entire circle. Mathematically, $\frac{C}{r}=\frac{2 \pi r}{r}=2 \pi$. Therefore, there are about 6.28 radii around a circle or exactly 2π radians.

A radian, much like an angle in degrees, measures the amount of rotation from the initial side to the terminal side of an angle in
 terms of the radius.

VOCABULARY

An angle is in standard position when the vertex is at the origin and the initial side is on the positive x-axis.

Coterminal angles are angles with the same initial and terminal sides, but different measures.

For example $\frac{\pi}{6}$ and $-\frac{11 \pi}{6}$ are coterminal angles, as well as $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$.

Converting Between Radians and Degrees

To convert degrees to radians, multiply the angle by $\frac{\pi \text { radians }}{180^{\circ}}$.
To covert radians to degrees, multiply the angle by $\frac{180^{\circ}}{\pi \text { radians }}$.

Examples

Convert each degree measure into radians.

1) 210°
2) -135°
3) -570°

Convert each radian measure into degrees.

4) $\frac{4 \pi}{3}$
5) $-\frac{\pi}{6}$
6) $\frac{5 \pi}{4}$
