Functions Notation And Operations with Functions

Objective:

By the end of the lesson you will be able to: Identify and understand FUNCTION notation. Add, Subtract, Multiply, and Divide Functions.

A FUNCTION is where each element of the DOMAIN is paired with exactly one element of the RANGE.

Determine whether these relations are functions.

b. | Domain | 1 | 3 | 5 | 1 |
| :--- | :--- | :--- | :--- | :---: |
| Range | 4 | 2 | 4 | -4 |

You can use the vertical line test to see if a graph represents a function. If a vertical line intersects the graph more than once, then the graph is not a function. Otherwise, the relation is a function.

Practice:

Determine whether these relations are functions. Explain.

3. $\{(2,2),(-1,5),(5,2),(2,-4)\}$
5.

Equations that are functions can be written in a form called function notation.

> Equation
> $y=3 x-8$

Function Notation

$$
f(x)=3 x-8
$$

$* f(x)$ is pronounced f of x.

This is NOT multiplication. It is just notation.

Rewrite the following using function notation.

1) $y=3 x+4$
2) $4 x-7=y$
3) $y=\frac{3 x}{2}+6$
4) $3 x+4 y=12$

Combine the following functions - This means to add, subtract, multiply or divide just like you do with polynomials.
If $f(x)=-x^{2}+7$ and $g(x)=2 x^{2}-4:$
5) Find $g(x)+f(x)$ 6) Find $(f-g)(x)$

Evaluate the following functions - This means replace all the x's with the given value:
If $f(x)=6 x+7$ and $g(x)=x^{2}-4$:
7) Find $f(-3)$
8) Find $g(4)$

Note: When you divide you can't have zero in the denominator - it's undefined. If you are trying to decide what the Domain is you need to exclude any value that makes the denominator zero. This is something you need to watch whenever you have a fraction.

Example) What is the Domain for: $\frac{4 x}{x-5}$?

