Secondary Math 3H Expanding/Condensing Logarithmic Equations and Calculating Logarithms Notes

Objectives:

- 1. Use logarithmic rules to expand expressions
- 2. Use logarithmic rules to condense expressions
- 3. Use a calculator to evaluate logarithms

For each of the following rules, $b \neq 1, x, y$, and c are real numbers. **Product Rule** $\log_b (xy) = \log_b x + \log_b y$ **Quotient Rule** $\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$ **Power Rule** $\log_b (x)^c = c \log_b x$ $\ln(x)^c = c \ln x$

Objective 1 Examples: Use the logarithmic rules to expand the expressions

a. $\log \frac{a^4 b}{c^5}$ b. $\ln \sqrt{m^3 n}$ c. $\log \frac{2w^4 h^3}{a^2 b^5}$

Objective 2 Examples: Use the logarithmic rules to condense the expressions

a.
$$\ln(x+1) - 3\ln(x-2)$$
 b. $\log 3 + 4\log a - \frac{2}{3}\log b$ c. $4\ln a - 3\ln b + 7\ln c - 5\ln(d+1)$

Change of Base Formula for Logarithms

Most calculators only have $\log x$ and $\ln x$. In order to evaluate logarithms with a different base, you will need the change of base formula.

$$\log_b x = \frac{\log x}{\log b}, \ b \neq 1$$
 or $\log_b x = \frac{\ln x}{\ln b}, \ b \neq 1$

Objective 3 Examples: Use the change of base formula to calculate the following expressions

a. $\ln 7$ b. $\log 0.15$ c. $\log_4 17$ d. $\log_{52} 26$