Objectives:

1. Use logarithmic rules to expand expressions
2. Use logarithmic rules to condense expressions
3. Use a calculator to evaluate logarithms

For each of the following rules, $b \neq 1, x, y$, and c are real numbers.

Product Rule

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y \quad \ln (x y)=\ln x+\ln y
$$

Quotient Rule

$$
\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y \quad \ln \left(\frac{x}{y}\right)=\ln x-\ln y
$$

Power Rule

$$
\log _{b}(x)^{c}=c \log _{b} x \quad \ln (x)^{c}=c \ln x
$$

Objective 1 Examples: Use the logarithmic rules to expand the expressions
a. $\log \frac{a^{4} b}{c^{5}}$
b. $\ln \sqrt{m^{3} n}$
c. $\log \frac{2 w^{4} h^{3}}{a^{2} b^{5}}$

Objective 2 Examples: Use the logarithmic rules to condense the expressions
a. $\ln (x+1)-3 \ln (x-2)$
b. $\log 3+4 \log a-\frac{2}{3} \log b$
c. $4 \ln a-3 \ln b+7 \ln c-5 \ln (d+1)$

Change of Base Formula for Logarithms

Most calculators only have $\log x$ and $\ln x$. In order to evaluate logarithms with a different base, you will need the change of base formula.

$$
\log _{b} x=\frac{\log x}{\log b}, b \neq 1 \quad \text { or } \quad \log _{b} x=\frac{\ln x}{\ln b}, b \neq 1
$$

Objective 3 Examples: Use the change of base formula to calculate the following expressions
a. $\ln 7$
b. $\log 0.15$
c. $\log _{4} 17$
d. $\log _{52} 26$

