Math 3 - Law of Sines Notes

YOUR CALCULATOR MUST BE IN DEGEREE MODE

Law of Sines

For any $\triangle A B C$, the Law of Sines relates the sine of each angle to the length of the side opposite the angle.

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \\
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
\end{aligned}
$$

Example 1:
Use the Law of Sines to solve the triangle. Round your answers to three decimal places.

The Ambiguous Case (SSA)

If you are given two angles and one side (ASA or AAS), the Law of Sines will easily provide ONE solution for a missing side. However, the Law of Sines has a problem dealing with SSA. If you are given two sides and one angle, where you must find an angle, the Law of Sines could possibly provide you with one or more solutions or even no solution at all.

Example 2:

Use the Law of Sines to solve the triangle.

Now check to see if more than one triangle exists with the given information.

```
                                    TEST
                                    180
                                    - (the found angle)
                                    Answer
                            + (given angle)
                            If sum > 180}\mp@subsup{}{}{\circ}\mathrm{ there is only one triangle
                                    If sum}<18\mp@subsup{0}{}{\circ}\mathrm{ there are two triangles
```

Example 3: Use the Law of Sines to solve the triangle

$$
C=36^{\circ}, a=17, c=16
$$

***When two triangles exist, the angle of the second triangle is 180 -first angle found

Example 4: Use the Law of Sines to solve the triangle

$$
A=150^{\circ}, a=9.3, b=41
$$

Proof:

| Start with any triangle that has angles A, B, |
| :--- | :--- |
| and C and side lengths, a, b, b, and c, where a is |
| the side opposite angle A, b is the side opposite |
| angle B , and c is the side opposite angle C. |, | Construct an altitude, h, from one of the angles |
| :--- |
| to the side opposite the angle. The two |
| triangles formed, $\triangle A B D$ and $\triangle B D C$, are right |
| triangles. |, | Use the definition of sine to relate the base |
| :--- |
| angles, $\angle A$ and $\angle C$, to the hypotenuse of |
| each and the altitude. |

You can also derive the Law of Sines from the formula for the area of a triangle given two sides and the included angle.

	All three of these formulas will give the same area for the triangle. area $=\frac{1}{2} b c(\sin A)$ area $=\frac{1}{2} a c(\sin B)$ area $=\frac{1}{2} a b(\sin C)$
$\frac{1}{2} b c(\sin A)=\frac{1}{2} a c(\sin B)$	Set the right side of the first two equations equal to one another.
$b c(\sin A)=a c(\sin B)$ $b(\sin A)=a(\sin B)$	Multiply each side of the equation by 2. Divide each side of the equation by c.
$\frac{\sin A}{a}=\frac{\sin B}{b}$	Divide each side by $a b$.

