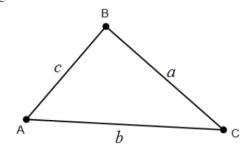
Secondary Math 3 - Area of a Triangle Notes


It is possible to find the area of a triangle using trigonometry when given two sides and the included angle. In order to do this, you must draw an altitude from the vertex of the non-included angle to the side opposite the angle.

Derivation of the area of a triangle

Derivation of the area of a triangle	
a	Start with any triangle that has angles A, B, and C and side lengths, a, b, and c, where a is the side opposite angle A, b is the side opposite angle B, and c is the side opposite angle C.
$A \longrightarrow D \longrightarrow C$	Construct an altitude, h , from the vertex of one of the angles to the side opposite the angle. The two triangles formed, $\triangle ABD$ and $\triangle BDC$, are right triangles.
$\sin A = \frac{h}{c}$ $c \sin A = h$	Find the measure of h in terms of $\angle A$ and side c using the sine ratio for $\angle A$.
Area = $\frac{1}{2}$ (base) (height) Area = $\frac{1}{2}b(c \sin A)$	The base of the entire triangle is b and the height is h . Substitute $c \sin A = h$ into the area formula for h , the height.
$Area = \frac{1}{2}bc(\sin A)$	NOTE: This formula works for acute, obtuse, and right triangles.

Area of a Triangle Given Two Sides and the Included Angle

The area of a triangle is half the product of the lengths of two sides and the sine of the included angle.

$$Area = \frac{1}{2}bc(\sin A)$$

$$Area = \frac{1}{2}ac(\sin B)$$

Area =
$$\frac{1}{2}ab(\sin C)$$

Examples:

1. Find the area of a triangle with sides a = 11, b = 5, and $m \angle C = 20^{\circ}$. Round your answer to the nearest thousandth (3 decimal places).

2. Find the area of a triangle with sides b = 13, c = 7, and $m \angle A = 43^{\circ}$. Round your answer to the nearest thousandth (3 decimal places).