Multiplying Polynomials (Special Cases)

Objective:

By the end of the lesson you will be able to multiply polynomials using special cases (identities).

Review - Multiplying Polynomials

Last lesson we multiplied binomials. We do this by using the distributive property twice:

Examples:

1) $(x+7)(x-3) \quad$ 2) $(x-9)(x-2)$

What is special about this problem?
3) $(x+7)(x-7)$

Special Cases for Multiplying Polynomials

Some types of problems occur so often when multiplying polynomials that it makes sense to have shortcuts.

These shortcuts are pre-formated 'looks' called identities.
The special case we will start with is Difference of Squares.

Example:
4) $(n+3)(n-3)$
5) $(2 n+9)(2 n-9)$

Simplify the following:
6) $(x+5)(x-5)$
7) $(3 x+1)(3 x-1)$
8) $(2 x+3 y)(2 x-3 y))$
9) $\left(10 x-y^{3}\right)\left(10 x+y^{3}\right)$

Special Cases for Multiplying Polynomials

The next special case we will look at is Perfect Square Binomials.

Simplify the following: 10) $(k+5)^{2}$
11) $(k-8)^{2}$
12) $(x+4)^{2}$
13) $(x-7)^{2}$

Simplify the following:
14) $(2 a+5 b)^{2}$
15) $(a-6 b)^{2}$
16) $(2 x+y)^{2}$
17) $(x-4 y)^{2}$

Wrap up
 Can you multiply polynomials: ()()?

Do you recognize the Difference of Squares?

Do you recognize Perfect Square Binomials?

Assignment - Due next class
 Packet 0.7 and 0.7 MathXL

