Radical and Rational Exponent Conversions

Objective:

By the end of the lesson you will be able to:

- Explain what a rational number as an exponent represents. (The numerator is a power, the denominator is a root.)
- Rewrite a rational exponent as a radical, and a radical as a base with a rational exponent.

Rational Exponents

Fraction exponents, called rational exponents, are another way to represent roots. For rational exponents, the numerator represents the power, and the denominator represents the root.

$$
a^{\frac{1}{m}}=\sqrt[m]{a}
$$

$$
a^{\frac{n}{m}}=\sqrt[m]{a^{n}}=(\sqrt[m]{a})^{n}
$$

Example:

$$
5^{\frac{1}{3}}=\sqrt[3]{5} \quad 5^{\frac{2}{3}}=\sqrt[3]{5^{2}}=(\sqrt[3]{5})^{2}
$$

Example: Rewrite the following in radical form.

1) $3^{\frac{6}{5}}$
2) $-3^{\frac{6}{5}}$
3) $(-3)^{\frac{6}{5}}$
4) $4^{\frac{2}{3}}$
5) $-4^{\frac{2}{3}}$
6) $(-4)^{\frac{2}{3}}$

Example: Rewrite the following in radical form.
7) $\sqrt[8]{5^{3}}$

$$
\text { 8) }-\sqrt[3]{7}
$$

9) $(\sqrt[3]{4})^{2}$
10) $\sqrt{6}$
11) $(\sqrt[3]{-8})^{2}$
12) $(\sqrt[a]{b})^{c}$

By rewriting expressions with rational exponents into radical form we can evaluate (simplify) problems.
Evaluate the following:
13) $36^{\frac{1}{2}}$
14) $64^{\frac{1}{3}}$
15) $36^{\frac{3}{2}}$
16) $(-9)^{\frac{3}{2}}$

Evaluate the following: (simplify)
17) $27^{\frac{4}{3}}$
18) $(-27)^{\frac{2}{3}}$
19) $49^{\frac{-1}{2}}$
20) $\sqrt[8]{16^{10}}$

Example: A town's population is decreasing. The population in the year 2000 was 4,000 , and the population t years after 2000 can be found by using the formula $f(t)=4000(.81)^{t}$ What was the town's approximate population 2.5 years after the year 2000?

Assignment:
 1.4 Packet and XL 1.4

