Ratios and Proportions

Objective:

- Remember the Basics - Use common units, review converting
- Understand and use Ratios
- Understand and use Extended Ratios
- Solve proportions (clear fractions)
- Understand and use Proportion Rules

Ratios and Proportions

Essential Understanding You can write a ratio to compare two quantities.
A ratio is a comparison of two quantities by division. You can write the ratio of two numbers a and b, where $b \neq 0$, in three ways: $\frac{a}{b}, a: b$, and a to b. You usually express a and b in the same unit and write the ratio in simplest form.

$$
\frac{3}{4} \text { or } 3: 4 \text { or } 3 \text { to } 4
$$

A) Practice Write the ratio of the first measurement to the second measurement.

1. length of a tennis racket: 2 ft 4 in .

Be sure to reduce! length of a table tennis paddle: 10 in .
*Handy convertions: $1 \mathrm{~m}=100 \mathrm{~cm}, 1 \mathrm{~cm}=100 \mathrm{~mm}$

Reduce these ratios

$\frac{30}{15}$	$\frac{120}{6}$
$\frac{16}{40}$	$\frac{10}{25}$

Problem 2 Dividing a Quantity Into a Given Ratio

Got It? The measures of two supplementary angles are in the ratio $1: 4$. What are the measures of the angles?

1) Remember what supplementary means
2) Think about what the ratio looked like before it was reduced and rewrite the ratio as $\frac{1 x}{4 x}$
3) $1 x$ is the first angle and $4 x$ is the second. They add up to 180 , so we can write an equation to solve.
4) $1 x+4 x=180$
5) $5 x=180$, so $x=36$
6) Be sure to plug this result into the problem to get the answers: The first angle is $1(36)$ or 36 , and the second angle is 4(36) or 144
**Steps 2-6 are the basic steps you will use many times.
3. Baseball A baseball team played 154 regular season games. The ratio of the number of games they won to the number of games they lost was $\frac{5}{2}$. How many games did they win? How many games did they lose?

Extended Ratios

5. The lengths of the sides of a triangle are in the extended ratio $6: 7: 9$. The perimeter of the triangle is 88 cm . What are the lengths of the sides?

Equivalent Ratios = Proportions

Problem 4 Solving a Proportion

Got It? What is the solution of each proportion?

$$
\begin{array}{ll}
\text { a. } \frac{9}{2}=\frac{a}{14} & \text { b. } \frac{15}{m+1}=\frac{3}{m}
\end{array}
$$

Properties of Proportions

Key Concept Properties of Proportions

a, b, c, and d do not equal zero.

Property

(1) $\frac{a}{b}=\frac{c}{d}$ is equivalent to $\frac{b}{a}=\frac{d}{c}$.
(2) $\frac{a}{b}=\frac{c}{d}$ is equivalent to $\frac{a}{c}=\frac{b}{d}$.

How to Apply It

Write the reciprocal of each ratio.
$\left(\frac{2}{3}=\frac{4}{6}\right)$ becomes $\frac{3}{2}=\frac{6}{4}$.
Switch the means.
$\frac{2}{3}, \neq \frac{4}{6}$ becomes $\frac{2}{4}=\frac{3}{6}$.
(3) $\frac{a}{b}=\frac{c}{d}$ is equivalent to $\frac{a+b}{b}=\frac{c+d}{d}$.

In each ratio, add the denominator to the numerator.
$\frac{2}{3}=\frac{4}{6}$ becomes $\frac{2+3}{3}=\frac{4+6}{6}$.

Practice-Solve the following:

$$
\frac{5}{4}=\frac{x}{8} \quad \frac{2+x}{2}=\frac{3}{5}
$$

$$
\frac{4}{x}=\frac{7}{3}
$$

$$
\frac{4}{3 x}=\frac{5}{12}
$$

One more practice problem: How many small, medium, and large uniforms?

A band director needs to purchase new uniforms. The ratio of small to medium to large uniforms is $3: 4: 6$.

1. If there are 260 total uniforms to purchase, how many will be small?
2. How many of these uniforms will be medium?
3. How many will be large?

Review

Simplify: $\quad\left(4 b^{2}\right)^{4}$
Change to radical form: $(10 k)^{\frac{7}{4}}$

Simplify: $-\frac{2 x^{-4}}{3 x^{-3} y^{0}}$

Assignment
 Worksheet 10.1
 XL10.1

